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Abstract
A class of Fredholm integral equations of the second kind is studied, with
kernel separable outside the basic interval (a, b). Using theorems of matrix
algebra, the solution for x outside (a, b) is found in terms of the Fredholm
determinants in a simple and compact form. As a particular case, the quantum
propagator for one-dimensional problems is obtained.

PACS numbers: 02.30.Rz, 02.10.Yn

The use of integral equations is ubiquitous in physics [1]. Fixing non-local properties of the
unknown functions, they allow the study of a large variety of phenomena. In most possible
cases an integral equation reduces to a differential equation with a boundary problem; therefore,
boundary conditions are automatically taken into account. In particular, the Fredholm integral
equation of the second kind

ψ(x) + λ

∫ b

a

dξK(x, ξ)ψ(ξ) = φ(x) (1)

is often encountered, and in many problems the solution is required when x lies outside the basic
interval (a, b). This is the typical case of scattering, when the details of the wavefunction
inside the potential are not needed, but we are mainly interested in the behaviour at large
distances. In general, the properties of the kernel K inside (a, b) are different from the outside
ones; in particular, outside, it is separable (unfortunately, only in the one-dimensional case,
see, e.g., [2]).

We will show that, if the kernel K is separable outside (a, b) (but not inside), it is possible
to obtain this solution in a simple form by finding formally ψ inside (a, b) and introducing it
into equation (1). Obviously, if K is everywhere separable, this equation is of the Pincherle–
Goursat type and the solution is well known [3].
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By discretizing in the basic interval (a, b) [3], equation (1) takes the form (being
understood that N → ∞)

ψj + λ

N∑
i=1

Kjiψi dx = φj (2)

where ψi = ψ(xi), φi = φ(xi),Kji = K(xj , xi), dx = (b − a)/N . Therefore, the solution
is, for x ∈ (a, b),

�ψ = A−1 �φ (3)

with �ψ and �φ being two column vectors with components ψi, φi , and

Aij = δij + Kij dλ, dλ = λ dx. (4)

When the kernel K is separable outside (a, b), namely

K(x, ξ) = H(x)F (ξ), x /∈ (a, b), (5)

equation (1) reads

ψ(x) + H(x)

N∑
i=1

Fiψi dλ = φ(x), (6)

and, by introducing the column vector �v with components Fidλ,

ψ(x) = φ(x) − H(x)(�vT · �ψ) = φ(x) − H(x)(�vT A−1 �φ) (7)

where T denoting transpose vector or matrix. It is easy to recognize that the quantity �vT A−1 �φ
can be written in the form

�vT A−1 �φ = Tr(A−1V) (8)

where V is given by

V = �φ�vT =




dλφ1F1 dλφ1F2 . . . dλφ1FN

dλφ2F1 dλφ2F2 . . . dλφ2FN

...
...

. . .
...

dλφNF1 dλφNF2 . . . dλφNFN


 , (9)

and we are led to

ψ(x) = φ(x)[1 − g(x)Tr(A−1V)] = φ(x)[1 − Tr(A−1W)],

g(x) = H(x)

φ(x)
, W = g(x)V.

(10)

Up to this point, it can seem that no good result has been obtained since, as for the solution
inside (a, b), the inverse of the matrix A is needed. A great simplification arises, however,
when observing that the matrix W is of rank 1. This can be seen in the following way: W is
given (see equation (9)) by the product of two (N ×1) and (1×N) matrices, both obviously of
rank 1, and therefore their product also has this rank [4]. Now, denoting by |M| the determinant
of the square matrix M, the following theorem holds.

If A is a non-singular matrix and W is a matrix of rank 1, then

Tr(A−1W) = 1 − |A − W|
|A| . (11)

The proof is easy: suffice it to write

|A − W| = |A||I − A−1W|, (12)
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and expanding the last factor by diagonal minors [5], one has

|I − A−1W| = 1 − Tr(A−1W). (13)

Therefore equation (10) takes the simple form

ψ(x) = φ(x)
|A − W|

|A| . (14)

It is useful to write W as

W = α(x)U (15)

where α(x) is an adimensional function, in general different from g(x). So,

ψ(x) = φ(x)[1 − α(x)Tr(A−1U)] = φ(x)

[
1 − α(x)

(
1 − |A − U|

|A|
)]

. (16)

It can be recognized at once that |A| is the Fredholm determinant �(λ) of the integral
equation (1). On the other hand, also �(λ) = |A − U| is an analogous infinite determinant
(be aware that � depends only on the kernel, but � depends also on the known function φ)
that can be calculated in a similar way. Infinite determinants of this kind are well known in
the literature, and convergent expansions in power series of λ can be obtained [3, 6, 7]. In
comparison with the one inside the basic interval, the simplicity of this solution is clearly
greater; in order to underline this point, we will explicitly show the formal solution inside the
basic interval. Rewriting equation (3), by cofactors A(j i), as

ψj = 1

|A|
N∑

i=1

A(j i)φi, (17)

the limit N → ∞ gives, as shown in [8],

ψ(x) = φ(x) − 1

�(λ)

∫ b

a

dξ�(x, ξ ; λ)φ(ξ), x ∈ (a, b) (18)

where �(x, ξ ; λ) is a function similar to �(λ), although more complicated. The great
difference between equation (16) and equation (18) is evident.

This result can be applied to scattering integral equation for a particle with mass m subject
to a non-singular potential V (x), different from zero when x ∈ (a, b). Starting from the
Schrödinger equation in integral form and taking as unperturbed Hamiltonian the free one,
we are led to the equation for the propagator G(x, t; η) [9, 10], where η and x are initial and
final positions, respectively; after a Laplace transform, the following equation is obtained (for
details, see [11]):

ψ(x) + λ

∫ b

a

dξ e−k|x−ξ |V (ξ)ψ(ξ) = φ(x) (19)

where ψ(x) is the Laplace transform of the propagator (sometimes called the ‘energy
propagator’ or ‘Green function’), and

φ(x) = c

2

e−c|x−η|√s

√
s

, c =
√

2m

h̄
, λ = c

2h̄

1√
s
, k = c

√
s. (20)

The kernel outside the main interval has the form

K(x, ξ) =
{

ek(x−ξ)V (ξ) for x < a

e−k(x−ξ)V (ξ) for x > b.
(21)

The quantities s, conjugate to time t by Laplace transform (the energy), and η (the initial
position < a) play the role of parameters and are omitted in ψ .
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In the transmission case (x > b), one has

φ(x) = c

2

e−c(x−η)
√

s

√
s

, φi = c

2

e−c(xi−η)
√

s

√
s

, H(x) = e−kx, Fi = ekxi Vi

(22)

so that α(x) = 1, and

A =




1 + dλ1 dλ2 e−kx12 . . . dλN e−kx1N

dλ1 e−kx12 1 + dλ2 . . . dλN e−kx2N

...
...

. . .
...

dλ1 e−kx1N dλ2 e−kx2N . . . 1 + dλN


 ,

Ut =




dλ1 dλ2 ekx12 . . . dλN ekx1N

dλ1 e−kx12 dλ2 . . . dλN ekx2N

...
...

. . .
...

dλ1 e−kx1N dλ2 e−kx2N . . . dλN


 ,

(23)

where xij = |xi − xj |, dλi = Vi dλ. Therefore, |A − Ut | = �t(λ) = 1 and

ψ(x) = φ(x)

�(λ)
. (24)

The reflection case (x < a) is more complicated; now

φ(x) = c

2

e−c|x−η|√s

√
s

, φi = c

2

e−c(xi−η)
√

s

√
s

, H(x) = ekx, Fi = e−kxi Vi (25)

and it turns out that

α(x) = c

2

1

φ(x)

ek(x+η)

√
s

, Ur =




dλ1 e−2kx1 dλ2 e−kx+
12 . . . dλN e−kx+

1N

dλ1 e−kx+
12 dλ2 e−2kx2 . . . dλN e−kx+

2N

...
...

. . .
...

dλ1 e−kx+
1N dλ2 e−kx+

2N . . . dλN e−2kxN


 , (26)

where x+
ij = xi + xj , leading to the result

ψ(x) = φ(x) − c

2

ec(x+η)
√

s

√
s

[
1 − �r(λ)

�(λ)

]
. (27)

The effective calculation of the determinants � and � is, in general, a difficult task. Let
us consider the transmission (equation (24)), where only � is required; by following, for
example, [6], it is easy to show that, for the kernel K(x, ξ) = e−k|x−ξ |V (ξ), one has

�(λ) = 1 +
∞∑

n=1

λn

n!
Dn, (28)

Dn =
∫ a

0
dxn · · ·

∫ a

0
dx2

∫ a

0
dx1

∣∣∣∣∣∣∣∣∣

1 e−kx12 · · · e−kx1n

e−kx12 1 · · · e−kx2n

...
...

. . .
...

e−kx1n e−kx2n · · · 1

∣∣∣∣∣∣∣∣∣
V (x1)V (x2) · · · V (xn), (29)
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giving a series expansion that can be useful for approximate calculations. We like to point out
another method of calculating �; among various interesting analytical properties, it obeys the
differential equation [6]

�′(λ)

�(λ)
=

∞∑
n=0

(−1)nAn+1λ
n (30)

where An are the so-called traces of iterated kernels:

An =
∫ a

0
dx

∫ a

0
dxn−1 · · ·

∫ a

0
dx2

∫ a

0
dx1K(x, xn−1)K(xn−1, xn−2) · · · K(x2, x1)K(x1, x).

(31)

This alternative expression for � follows

�(λ) = e−F(λ), F (λ) =
∞∑

n=1

(−1)nAn

λn

n
. (32)

As a simple example, by considering a delta potential

V (x) = V δ(x − y), 0 < y < a, (33)

An = V n is easily obtained, so that

F(λ) =
∞∑

n=1

(−1)nV n λn

n
= −ln(1 + λV ). (34)

It follows �(λ) = 1 + λV , and equation (24) gives the well-known formula for the Laplace
transform of the delta potential propagator [12, 13].

These considerations can be extended by observing that a separable kernel has the general
form

K(x, ξ) =
M∑
l=1

H(l)(x)F (l)(ξ) or K(x, xi) =
M∑
l=1

H(l)(x)F
(l)
i (35)

and equation (16) becomes, with obvious extension of definitions,

ψ(x) = φ(x)

[
1 −

M∑
l=1

αl(x)

(
1 − |A − U(l)|

|A|
)]

. (36)

The most general kernel behaving as shown in equation (35) outside (a, b), but not inside,
seems to be

K(x, ξ) =
M∑
l=1

h(l)(x)f (l)(ξ) exp(−kl|xβl − ξβl |) (37)

with βl > 0 ∀ l, x > 0, and

H(l)(x) = h(l)(x) exp(±klx
βl ), F (l)(ξ) = f (l)(ξ) exp(∓klξ

βl ), (38)

where the upper sign holds when x < a and the lower holds when x > b. The case of
scattering, given by equation (19), is recovered when l = 1, h = const, βl = 1.

This equation represents a class of kernels that is larger than one could expect. For
example, by considering an arbitrary, regular function of |x − ξ |: K = K(|x − ξ |), this can
be expanded with arbitrary precision in (a, b) through a truncated Fourier series, that is a
particular case of equation (37).

To sum up, we have presented a method of obtaining the solution of a class of integral
equations, outside the basic interval. The result has a simple form and is expressed by means
of the Fredholm determinant � and its companion � in a direct way, without performing
any operation of integration or derivation on them. As an immediate application, the energy
propagator for unidimensional problems is found.
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